1/2x^2+4=20

Simple and best practice solution for 1/2x^2+4=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x^2+4=20 equation:



1/2x^2+4=20
We move all terms to the left:
1/2x^2+4-(20)=0
Domain of the equation: 2x^2!=0
x^2!=0/2
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x^2-16=0
We multiply all the terms by the denominator
-16*2x^2+1=0
Wy multiply elements
-32x^2+1=0
a = -32; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-32)·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-32}=\frac{0-8\sqrt{2}}{-64} =-\frac{8\sqrt{2}}{-64} =-\frac{\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-32}=\frac{0+8\sqrt{2}}{-64} =\frac{8\sqrt{2}}{-64} =\frac{\sqrt{2}}{-8} $

See similar equations:

| 38,200x=0.79 | | 10.9=3n-4 | | 64+p=84 | | 16=t+4.9t^2 | | 48=i²*3 | | b/3=b-9/2b-10-1/2 | | |x-5|+12=18 | | 90(x)+43699=650000 | | 6h+15=-10+5h+11 | | 7/4x+7/12=1/3x-1/6 | | 2x-3+6x+9=90 | | 48=i*3 | | 7.9/x=38,200 | | (4x-7)/(8)+x=(4x+7)/(4)+3 | | 12x-3x+90=12x+51 | | 4x-4–6x=-10 | | 4x-(2x+6)=10 | | 38,200/x=7.9 | | 6(2z+11)=11(z+6)+z | | d-18=17 | | 2x+1/4=1/2x+16 | | 2x+1/4=2/4x+16 | | 1/4y-2=5 | | .5x+3x=70 | | 9x-19+3x=8x+13 | | 5.7p+27=6.7p+13 | | (x-3)/4=(x+1)/8 | | x+1=x+1=  22 | | 10y+1=3(-2-5) | | 15+3y=30+6y | | 9=2(x−5)+7 | | -2-4n-1=-3 |

Equations solver categories